Preserving plucked string interaction technique in accessible instruments

Jacob Harrison
Augmented Instruments Laboratory, QMUL
@Jcb_H
Preserving *plucked-string interaction in accessible instruments*

Background: accessible string instruments & plucked string technique

Two instrument studies: *Adapted Bass Guitar & the Strummi*

Study findings and reflections
Background
Background - Plucked String Interaction

Plucking/Note activation:
• Timbre
• Dynamics
• Timing
• String muting
• Material/plucking surface

Fretting/Note selection:
• Note choice
• Expression following note onset
 • e.g. string bending, vibrato
• Legato playing
 • e.g. hammer-on/pull-off/slide
• Harmonics
• String muting
Approaches to accessible string playing

Kellycaster

Larsen's Actuated Guitar

Bill Clements

Linnstrument

Chapman stick
Approaches to accessible string playing

The Actuated Guitar

Jeppe Larsen et al.
Approaches to accessible string playing

Bill Clements
Approaches to accessible string playing

Chapman Stick
Approaches to accessible string playing

LinnStrument
The Adapted Bass Guitar
The Adapted Bass - Instrument Design

- Designed in collaboration with the OHMI Trust
- Design brief: to make an instrument to submit to the OHMI competition
- Explicit goal to design a bass guitar **playable without the use of one hand and arm**
- Secondary goals:
 - Maintain separation of note selection (fretting) and note activation (plucking)
 - Preserve acoustic strings, look and ‘feel’ of bass guitar
The Adapted Bass - Instrument Design

• Survey of bass guitar players

 • Aim: to establish the roles of the **fretting** and **plucking** hands in bass performance, and their importance in relation to various elements of bass playing

• Online survey: **48 respondents**

• **Rhythmic accuracy, choice of rhythm, note choice**, were the most important performance elements

• **Fretting hand articulation** and **use of effects** among the least important

• “groove”, “feel” and “timing” were common terms used in the free text comments

• **Plucking hand** most important to players’ style and expression (52%) compared with **fretting hand** (23%) or **both hands** (23%)
The Adapted Bass - Instrument Design

Solenoid based fretting mechanism

Bela microcontroller & circuitry

MIDI controller assigned to frets
The Adapted Bass - User Study

• Aims:
 • To evaluate the adapted bass as a usable musical instrument
 • To observe the effects of transferring the role of the fretting hand onto an alternate limb

• Participants
 • Six males with 15-30 years of musical experience (5-17 years spent playing bass)
 • Non-disabled musicians
 • Recruited from C4DM

• Study format
 • Rehearsal with the instrument (>2 hours over 3 weeks)
 • Performance to a 1 min backing track
 • Filmed and annotated, followed by questionnaire

The Adapted Bass - Findings

- Overcoming **limitations** of the system:
 - Use of open strings as passing notes - minimise foot movement
 - String muting
 - Fretting mechanism not capable of lightly pressing on string
 - **Functional mutes** transferred to plucking hand (e.g. for staccato, timing)
 - Palm-muting with plectrum used as functional adaptation/stylistic choice
 - **Affordances** of the system:
 - Strong/rapid hammer-ons
The Strummi
The Strummi - Instrument Design

• PhD study in collaboration with Robert Jack

• Focus on the effect of form and interaction modality on perceived authenticity (‘guitariness’)

• Form: guitar-shaped vs. tabletop

• Interaction: physical strings vs. touch sensor

TG - Touch Guitar
The Strummi - Instrument Design

- Six dampened guitar strings
- **Karplus-strong** virtual string model
- Two modes: **sample-triggering** and **audio-rate excitation**
- Audio-rate excitation: finger-picking, strumming with plectrum, tapping, scraping, bowing
- Touch version: sample-triggering only
- Six chord buttons: C, G, D, Am, Em, Bm
The Strummi - User Study

• Participants
 • Two groups: competent guitarists and non-musicians (Self-reported guitar experience)
 • 16 competent guitarists, 16 non-musicians

• Study format
 • Comparison of two of four instrument variations
 • Free improvisation + performance to a backing track
 • Recorded structured interview
 • On-screen questionnaire
The Strummi - Findings

• **Authenticity** of experience:
 • Guitarists noted *familiarity* of strings
 • Both groups recognise the *guitar form* as most guitar-like

• **Social role** of instruments

• **Richness** of interaction:
 • Non-musicians tended to prefer *sample-triggering*
 • Guitarists preferred *audio-rate excitation*
 • Touch sensor encouraged keyboard/tablet style gestures (tapping/swiping)
Discussion

• Presence of real strings important for authenticity

• **Correspondence** between action and sound

• Separation of note **selection** and **activation**

 • Transferral of note selection to alternate limb/control scheme

• When is a guitar not a guitar?

 • **Addition/removal** of features/affordances

 • **Preservation** of salient components: timing, rhythm, mode of interaction

• **Adaptation** of technique
Acknowledgements etc.

OHMI Trust - One-Handed Bass Guitar project

Robert Jack - Collaborator on Strummi study

Ailish Underwood - Strummi guitar body design

Andrew McPherson - PhD Supervisor

This work was supported by EPSRC and AHRC Centre for Doctoral Training in Media and Arts Technology [grant number EP/L01632X/1]

Email: j.harrison@qmul.ac.uk

Twitter: @Jcb_H

